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Interacting Quantum and Classical Continuous
Systems I. The Piecewise Deterministic Dynamics
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A mathematical construction of a Markov�Feller process associated with a
completely positive coupling between classical and quantum systems is
proposed. The example of the free classical particle on the Lobatchevski space
Q interacting with the quantum system characterized by coherent states on Q
is considered.
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1. INTRODUCTION

In recent years open systems started to play an important role, for
example, in the field of quantum optics (ref. 18 and references therein) or
in condensed-phase dynamics (ref. 19 and references therein). In such a
system it is assumed that a small, quantum part interacts with a surround-
ing bath. The Hamiltonian of the total system takes form

H=Hs+Hr+VI

where Hs and Hr are the Hamiltonians of the isolated quantum subsystem
and the reservoir, and VI is the coupling operator. The problem how the
properties of the quantum subsystem are modified by the influence of
the environment occupies the central place in the discussions. To answer
this one has to introduced, the so-called, reduced density matrix, which is
obtained from the total density matrix by tracing over the bath variables,
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and to derive the dynamical equation which it satisfies, the master equa-
tion. Generally the composition of a unitary automorphism with a condi-
tional expectation leads to a complicated integro-differential equation.
However, for a large class of interesting physical phenomena we can derive,
using certain limiting procedures, such as the weak coupling limit, the low
density limit or the singular coupling limit, an approximate Markovian
master equation for the reduced density matrix.(1)

In order to obtain a particular equation a model for the bath has to
be specified. A convenient choice is to assume that the reservoir consists of
independent harmonic oscillators linearly coupled to the quantum sub-
system. For example, in ref. 7 such a model was used for the description of
properties of a quantum harmonic oscillator coupled to the radiation field.
When information about the dynamics of the classical variables is unim-
portant for the problem, then it is convenient to treat the environment as
a source of random fluctuations of the quantum Hamiltonian. Then the
quantum subsystem evolves according to H$s=Hs+�j U(q, qi), where U is
a potential function, q is the quantum position variable and the [qi]
specify the possible configuration of the classical particles. For example, in
such a way the model of a quantum particle in a double-well potential
immersed in a classical fluid was described in ref. 13.

In all these models, however, the classical environment is, in fact,
treated also as a quantum system evolving according to the Hamiltonian Hr .
In another approach it is assumed that only the small part needs to be
treated quantum mechanically, while the environment may be described
classically, by Newton's equation in the field of the quantum subsystem.
When the quantum subsystem adapts instantaneously to the dynamics of
the classical bath the following computational algorithm can be applied.(22)

One begins with an arrangement of classical molecules R(t) at fixed initial
time t=t0 . The adiabatic ground state �0(q) is found as a solution of time-
independent Schro� dinger equation in the interacting potential VI (q, R(t0)).
The bath moves to a new configuration R(t1) according to Newton's law
with the additional quantum potential

Fq(t)= &(�0 , {R VI (q, R(t)) �0)

for t # [t0 , t1]. Next the new �1(q) must be found for the new configuration
of the classical system R(t1), and we can repeat the procedure. Thus the
quantum subsystem affects the classical dynamics through the quantum
force Fq(t), and the quantum state depends on the classical configuration
R(t). Using mixed state description over short times and periodically
resolving � into its adiabatic components we obtain a non-adiabatic
generalization called ``surface hopping,''(22) in which the transitions between
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adiabatic states are allowed. A practical algorithm that determines when a
quantum state switch will occur was proposed by Tully in ref. 21. The key
point in his method lies in calculating, the so-called, switching probabilities
gkj (depending on time) from the current quantum state |k) to all other
states | j). When we know them, a uniformly distributed random number
% # (0, 1) is then selected to determine whether a switch should occur. For
example, if k=1, a switch to state |2) will occur if %< g12 . A switch to state
|3) will occur if g12<%< g13 , etc. Such methods have been successful in
quite many examples.(21, 22) However, they contain two basic disadvantages.
Firstly, they do not provide a consistent dynamical scheme, and, secondly,
they ignore the results of the modified dynamics of the classical variables.

Recently a mathematically consistent description of the interaction
between classical and quantum systems has been proposed.(3�5) From
the structural and mathematical point of view the three most essential
ingredients of the Blanchard and Jadczyk model are:

�� tensoring of a non commutative quantum algebra of operators
with a commutative classical algebra of functions,

�� renouncing pure states for density matrices and replacing
Schro� dinger unitary dynamics by a completely positive one,

�� interpreting the continuous time evolution of statistical states in
terms of a piecewise-deterministic Markov process on pure states of the
total system.

In this approach classical quantities become elements of the center of
the total algebra. Because automorphisms of an algebra leaves its center
invariant, it is necessary to use completely positive semigroups to enable
the transfer of information between the classical and quantum system. Thus
the evolution of the quantum object becomes dissipative and the modifica-
tion of the dynamics of the classical system through the expectation value
of some quantum observable appears. The fact that the classical and the
quantum system must be coupled by a dissipative rather then reversible
dynamics follows from no-go theorem, (12, 16) where it was shown in a
general algebraic framework that the information about the measured
object cannot be transmitted to values of macroscopic observable as long
as the dynamics of the total system is reversible in time.

Clearly, the key point in the coupling is to construct a generator of
a dynamical semigroup of the total system. Recently an example of such a
generator has been introduced in ref. 14. The classical system was represented
by an algebra of functions defined on some phase space (symplectic mani-
fold M ) while the quantum system was described by the von Neumann
algebra of all bounded operators on a Hilbert space. The coupling operator
has been built out of the following data:
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(a) a self-adjoint quantum operator P� ,
(b) a connection between the points of the spectrum sp(P� ) of P� and

shifts on M,

(c) a function f : M_sp(P� ) � R+ monitoring the strength of the
coupling.

Such a generator turned out to be suitable for the rigorous discussion
of the SQUID-tank model, which consists of an LC oscillatory circuit
coupled via a mutual inductance to a superconducting ring. In that system
the oscillatory circuit acts as an external flux source for the SQUID ring,
which induces a screening current in the ring. This screening current is
coupled back to the classical circuit due to the mutual inductance. It results
in the modification of the equation of motion for the clasical harmonic
oscillator by the expectation value of the screening current operator.(14)

When a quantum system is characterized by a semispectral measure on
some homogeneous space, like in the generalized coherent state approach,
then there is no particular self-adjoint operator, which could be responsible
for the coupling, but all quantum states can affect the classical variables.
Such models describe a quantized particle moving on a locally compact
homogeneous configuration space G�H. They are physically interesting
because the nontrivial topology of the configuration space may exhibit, the
so-called, topological quantum effects (see, for example refs. 10 and 11,
where the particle on the circle and on the sphere was considered). Let us
discuss this point more precisely. To define the interaction between the
classical and quantum system one has to specify which elements of both
systems are essential for the coupling. In the classical system the answer
seems to be clear: points of the phase space do the job. When there is a
particular self-adjoint quantum operator which is supposed to influence the
behavior of the classical part, then its spectral measure, i.e., a complete
family of orthogonal projectors, is the right ingredient of the coupling. In
the case when all quantum states, or at least a family of states which
generates the quantum algebra, can affect the classical system we have to
discriminate between non-orthogonal projectors and so to replace a spec-
tral measure by a semispectral one. The generalized coherent state are the
best known example which provides such a measure. In such a case the
construction of the coupling operator was presented in ref. 15.

With a given dynamical semigroup Tt we can associate a Markov�
Feller process with values in the pure state space of the total system in
such a way that Tt(Px)=� P(t, x, dy) Py is satisfied. Here Px is a one-
dimensional projector representing pure state x and P(t, x, dy) is the tran-
sition probability function of a desired process. It consists of a mixture of
deterministic motion and random jumps. In the case when a discrete
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classical system (a measuring apparatus) is coupled to a finite quantum
system described by a matrix algebra it was shown in ref. 8 that such a pro-
cess exists and moreover, contrary to the pure quantum case, that this pro-
cess is unique. For the probabilistic description of this process, see ref. 6.
Applying the uniqueness theorem we deduce the piecewise deterministic
algorithm generating sample paths of an individual quantum system.(5) The
algorithm provides a way for calculating numbers needed in real experi-
ments and also for a natural mathematical modeling of a feedback during
experiments with quantum systems. The most transparent example of the
applications of such an algorithm is the computer simulation of traversal
and reflection times of electrons through a one-dimensional barrier. In
ref. 20 such a tunneling phenomenon was considered and the dependence
of these times on the parameters of the barrier and the detectors was
examined.

The main objective of the present paper is to provide the construction
of a piecewise deterministic process in the case when the classical system is
continuous and the quantum one infinite dimensional and to discuss its
properties.

2. THE DYNAMICAL SEMIGROUP ASSOCIATED
TO THE TOTAL SYSTEM

Let us briefly describe the framework for the classical-quantum coupling.
At first we consider a classical system C with a finite number of degrees of
freedom. Its phase space is a symplectic manifold (M, |). The C*-algebra
C0(M) of continuous and vanishing at infinity functions represents complex
observables of the system. Because it will be more convenient to consider
von Neumann algebras we pass to the representation in the Hilbert space
Hc=L2(M, B, +), where B is the Borel _-algebra and d+ is the unique
Borel measure determined by the volume form |n, n=dim M�2. We
assume that the classical algebra Ac equals to C0(M )"=L�(M, B, +).
Statistical states of C are then normed and positive elements of
L1(M, B, +). The time evolution of C is described by a flow on M, i.e.,
a mapping g: (t, x) � gt(x) such that:

(a) g: R_M � M is smooth,

(b) for any t, gt is a diffeomorphism of M,

(c) t � gt is a group homomorphism.

Its generator is a complete vector field X on M. It gives an ultraweakly
continuous one parameter group of automorphisms of Ac : f (x) � f ( g&1

t x),
x # M. Its generator we denote by $c .
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Now we come to the quantum system. Let us consider a quantum
particle on a homogeneous configuration space Q=G�K, where G is a Lie
group and K is a closed subgroup. We assume moreover that G and K are
both unimodular. The quantum theory of such a system may be introduced
by using the concept of generalized coherent states, (17) see also refs. 2 and 9.
Let (?, Hq) be a unitary, strongly continuous and irreducible representation
of G, such that for every k # K ?(k) �0=eia(k)�0 for some unit vector
�0 # Hq . It follows that for each q # Q we have a one-dimensional projector
Pq=|?( g) �0)(�0 ?( g)|, where [ g]=q. We assume that the system of
coherent states is square integrable and normalized, i.e.,

|
Q

d:(q) Pq=1,

in the strong sense, where d: is a unique G-invariant and _-finite Borel
measure on Q. We also assume that for every q # Q the reproducing kernel
q$ � K(q, q$)=(q, q$) vanishes for a set of d:-measure zero. The quantum
algebra Aq is defined as

Aq={| f (q) Pq d:(q), f # Cc(Q)="
=[Pq , q # Q]"

and so Aq=B(Hq), the algebra of all bounded and linear operators on Hq .
Statistical states of the quantum system are given by non-negative density
matrices \ # Aq with Tr(\)=1. The time evolution is given by A �
eitHAe&itH, where H is the operator closure of (d?(h), DG), h # G��the Lie
algebra of group G, and DG is the Ga# rding domain. Clearly H is a self-
adjoint operator. The generator i[H, } ] of the time evolution of the quan-
tum system we denote by $q .

Let us now consider the joint system. For the total algebra AT we take
the tensor product AT=Ac�Aq as von Neumann algebras on H� =
Hc�Hq . The set of states is equal to

ST={\~ # AT* : \~ (x) # Tr(Hq)+ a.e. and |
M

Tr(\~ (x)) d+(x)=1=
The mean value of A� # AT in a state \~ # ST is given by

(A� ) \~ =|
M

d+(x) Tr[A� (x) \~ (x)]

Now let us discuss the evolution of the total system. The total generator
consists of three parts: $c� id, id�$q and a superoperator L, which
describes the interaction between the classical and the quantum system.
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To construct L we assume the following:

(a) To every point x # M we associate an intensity parameter
*(x)>0. We assume that * is continuous and such that supx # M *(x)<�.
The influence of the classical system onto the quantum one is described by
a dissipative operation

A � *(x) |
Q

PqAPq d:(q)

(b) To every point q # Q corresponds a shift on the phase space M.
By shift we mean a homeomorphism hq : M � M, which leaves the measure
d+ invariant. Moreover we require that the mapping

M_Q % (x, q) � hq(x) # M

is continuous. The shifts are responsible for the action of the quantum
system on the classical one by f � f (hq } ).

Theorem 2.1. Suppose A� # AT . Let

L(A� )(x)=*(x)|
Q

d:(q) PqA� (hqx) Pq&*(x) A� (x)

Then L is a bounded and complete dissipation such that L(1� )=0, where
1� is the unit in AT .

Proof. It follows from a more general construction presented in ref. 15,
if we put the measure &x=*(x)1�2 $e , where $e is the Dirac measure concen-
trated on the neutral element in G. K

The operator L acting onto the classical part of AT :

L( f �1)(x)=*(x) |
Q

d:(q) f (hqx) Pq&*(x) f (x)1

moves it into the whole algebra AT . Also the quantum part is not preserved
by L.

Corollary. The operator

B=$c� id+id�$q+L

generates a dynamical semigroup Tt on the algebra AT .
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By a dynamical semigroup we understand a weak*-continuous semi-
group of contractive, completely positive and normal operators.

3. CONSTRUCTION OF THE PROCESS

In this section we associate with the dynamical semigroup Tt a
Markov�Feller semigroup on C0(E) with a locally compact space E. Here
C0 denotes the Banach space of all complex, continuous functions vanishing
at infinity and equipped with the sup norm. When the classical space was
discrete and the quantum system was finite dimensional, then we could
take for E the space of all one dimensional projectors of the joint system.
Let us notice that now we do not have any normal pure states in AT=
L�(M,B(Hq); d+) at all. So the idea is to restrict AT to a smaller C*-
algebra such that we can use the locally compact space M_Q as E.

Let A0
T=C0(M )�K(Hq), where K(Hq) denotes all compact operators

on Hq and the tensor product is define on the Hilbert space L2(M, B, +)
�Hq . Clearly A0

T is a C*-algebra, although without a unit.

Theorem 3.1. Tt : A0
T � A0

T .

Proof. We show that there exists a dense linear subspace D in A0
T

such that B: D � A0
T . At first let us consider the group :t(A)=eitHAe&itH

on L(Hq)). It is weak*-continuous, so the function t � Tr\:t(A) is
continuous for any \ # Tr(Hq), the trace class operators on Hq . When we
restrict :t to K(Hq) we obtain a weakly continuous semigroup, hence
strongly continuous as well. Thus there exists an operator norm dense
subspace Dq in K(Hq) such that $q : Dq � K(Hq). For the classical part we
take Dc=C �

c (M ), the subspace of smooth and compactly supported func-
tions. Then putting D=Dc�Dq in the algebraic sense we obtain a norm
dense subspace in A0

T on which $c� id+id�$q is well defined and takes
values in A0

T . Finally, we show that L: A0
T � A0

T . Because L is bounded,
so it is enough to check this for some norm dense subspace in A0

T . Let
D0=Cc(M )�Tr(Hq) and let us take A� = f �\, where f # Cc(M )+ and
\ # Tr(Hq)+. Hence for any q # Q the function

x � PqA� (hq x) Pq= f (hqx) Pq \Pq # Cc(M, Tr(Hq))

and

|
Q

d:(q) sup
x # M

&PqA� (hqx) Pq&op�& f &sup |
Q

d:(q) Tr(Pq\)<�
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Hence the function q � Pq A� (hq x) Pq is Bochner integrable in A0
T . By

linearity the same holds for all A� # D0 . Because *(x) is continuous and
uniformly bounded so also L: D0 � A0

T . K

Now let us define a map

A0
T % A� � F(A� )(x, q)=TrPq A� (x)

We denote F(A� ) by fA� .

Theorem 3.2. F is a bounded and positive operator from A0
T to

C0(E).

Proof. First we show that fA� is a continuous function on E. Let Pq=
|?( g) �0)(�0 ?( g)| and Pq0=|?( g0)�)(�0 �)(�0 ?( g0)|. Then

| fA� (x, q)& fA� (x0 , q0)|

�|Tr(Pq&Pq0
) A� (x)|+|TrPq0

(A� (x)&A� (x0))|

�|(?( g) �0 , A� (x)(?( g)&?( g0)) �0) |

+( (?( g)&?( g0)) �0 , A� (x) ?( g0) �0) |+&A� (x)&A� (x0)&op

�2 &A� (x)&op &(?( g)&?( g0)) �0&+&A� (x)&A� (x0)&op

Hence fA� is continuous. Moreover

sup
x, q

| fA� (x, q)|�sup
x

&A� (x)&op=&A� &

so the operator F maps A0
T into Cb(M_Q), the Banach space of con-

tinuous and bounded functions, and is bounded. Let A� = f �\, where
f # Cc(M ) and \ # Tr(Hq)+. Then F(A� )(x, q)= f (x) TrPq\. Because \=
�n an Pn and

TrPqPn=|(q, n) |2=|(?( g) �0 , n) |2

for [ g]=q so both functions q � TrPqPn and q � TrPq\ are uniformly
continuous. But TrPq\ # L1(Q, d:) hence TrPq\ # C0(Q) too. Let us choose
a compact set K1/M such that supp f /K1 and a compact set K2/Q
such that for every q # Q"K2 there is TrPq \<= & f &sup. Then

sup
(x, q) # M_Q"K1_K2

F(A� )(x, q)�& f &sup sup
q # Q"K2

TrPq\<=
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So F(A� ) # C0(M_Q) and this also holds for any element from Cc(M)�
Tr(Hq). Thus the assertion follows by the continuity of the map F. K

We want to use the operator F to transfer the dynamical semigroup Tt

onto the space C0(E). But there is the price we have to pay for replacing
thge big space CP(Hq) by a locally compact space Q. It results in the
possible lost of the injectivity of the map F. Nevertheless the kernel of F
has the following property.

Theorem 3.3. Ker F is a closed and Tt invariant subspace in A0
T .

If A� �0 and F(A� )=0 then A� =0.

Proof. The first statement follows from the continuity of F. The
generator B of Tt can be written as B=B0+L, where B0=$c� id+id�$q

and L is a bounded operator. Let A� # ker F. By the Trotter product
formula

Tt(A� )= lim
n � �

(e(t�n) B0e(t�n) L)n A�

and the limit exists in the norm of A0
T . Because ker F is closed, so it is

enough to check that exp(tB0)A� # ker F and exp(tL)A� # ker F. For the
classical part in B0 we have that

F(et$c� idA� )(x, q)=TrPqA� ( gt x)=0

because TrPqA� ( y)=0 for any q # Q and any y # M. Let us recall that gtx
is the integral curve of the vector field X starting from point x # M. For the
quantum part

F(etid�$qA� )(x, q)=Tr(PqeitHA� (x) e&itH )=Tr(Pexp(&th) qA� (x)))=0

Now let us consider the dissipative part. Because L is bounded, so it is
enough to show that F(L(A� ))=0. But

F(L(A� ))(x, q0)=*(x) |
Q

d:(q) Tr(Pq0
PqA� (hq x) Pq)&*(x) F(A� )(x, q0)

=*(x) |
Q

d:(q) Tr(Pq0
Pq) Tr(Pq A� (hqx))

=*(x) |
Q

d:(q) Tr(Pq0
Pq) F(A� )(hqx, q)=0
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To prove the second statement suppose that A� �0 and F(A� )=0. It means
that, for every x # M, TrPqA� (x)=0 for all q # Q. Because A� (x) is positive
and compact, so A� (x)=� aiPi , where ai�0 and Pi are one-dimensional
projectors. So � ai Tr(PqPi)=0. But Tr(PqPi) can not vanish for all q,
since � d:(q) Tr(PqPi)=1. Hence ai=0 for all i. K

Now let us define a vector field Y on E by

(Yf )(x, q)=
d
dt

f ( gtx, exp(&th) q)t=0

for all f # C 1
c(E ). Let & be a function &: E_B(E ) � [0, 1] given by

&(x, q; dx$, dq$)=$(x$&hq$x) Tr(PqPq$) d+(x$) d:(q$)

where $(x$&x) d+(x$) denotes the Dirac measure concentrated in point
x # M. It is clear that & is a transition kernel on E, that is:

(a) \(x, q) # E &(x, q; } ) is a probabilistic measure on the Borel
_-algebra B(E ),

(b) \E # B(E ) the function (x, q) � &(x, q; E) is measurable.

Theorem 3.4. The closure of the operator L given by

L( f )(x, q)=(Yf )(x, q)+*(x) |
E

&(x, q; dx$, dq$) f (x$, q$)&*(x) f (x, q)

for f # C 1
c(E) is a generator of a Markov�Feller semigroup Pt on C0(E ).

The dynamical system (A0
T �ker F, T� t) can be imbedded into (C0(E ), Pt).

Here T� t : A0
T �ker F � A0

T �ker F denotes the quotient semigroup.

Proof. To prove the first statement it is enough to show that for any
f # C0(E ) also

(&f )(x, q)=|
E

&(x, q; dx$, dq$) f (x$, q$) # C0(E )

At first we check that it is a continuous function. Because & is bounded in
the sup-norm, so we may assume that f # Cc(E ). Let qn � q and xn � x.
Then

lim
n � � |

E
&(xn , qn ; dx$, dq$) f (x$, q$)

= lim
n � � |

K
d:(q$) Tr(Pqn

Pq$) f (hq$xn , q$)
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where K= pr2(supp f ) and pr2 is the projection from M_Q onto Q. But
for every n there is

Tr(Pqn
Pq$) | f (hq$xn , q$)|�& f &sup

and for any q$

lim
n � �

Tr(Pqn
Pq$) f (hq$xn , q$)=Tr(PqPq$) f (hq$x, q$)

so

lim
n � � |

E
&(xn , qn ; dx$, dq$) f (x$, q$)=|

E
&(x, q; dx$, dq$) f (x$, q$)

Now we show that &( f ) # C0(E ). Because for any q$ the function (x, q)
Tr(PqPq$) f (hq$x, q$) belongs to C0(E ) and there is

|
K

d:(q$) sup
x, q

Tr(PqPq$) | f (hq$x, q$)|�:(K) & f &sup<�

so it is Bochner integrable and hence &( f ) # C0(E ). It follows that L is a
generator of a Markov�Feller semigroup on C0(E ).

To prove the second statement let us define the quotient map
F� : A0

T�ker F � C0(E ). Then F� is injective and F� (T� t[A� ])=F(TtA� ). From
the proof of Theorem 3.3 we know that

F(et$c � idA� )(x, q)= fA� ( gt x, q)

F(eitd�$qA� )(x, q)= fA� (x, exp(&th) q)

and

F(L(A� ))(x, q)=*(x) &( fA� )(x, q)&*(x) fA� (x, q)

Hence F(etLA� )=et*( } )(&&I )fA� and so

F(e(t�n) B0 e(t�n) LA� )=e(t�n) Ye(t�n) *( } )(&&I )fA�

Thus, by induction and the limit, we obtain that F(Tt A� )=Pt(F(A� )). Hence
F� (T� t[A� ])=Pt F� ([A� ]). K

Let us now describe the Markov process determined by the semigroup

Pt=s& lim
n � �

(e(t�n) Ye(t�n) *( } )(&&I ))n
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The process generated by vector field Y is a deterministic motion on E with
the transition function given by $(x$& gt x) $(q$&exp(&th) q) d+(x$) d:(q$).
To calculate the transition function for the generator *( } )(&&I) we apply
the following trick. Let *=supx *(x) and let us define a new transition
kernel

&$(x, q; dx$, dq$)=\1&
*(x)

* + $(x$&x) $(q$&q) d+(x$) d:(q$)

+
*(x)

*
&(x, q; dx$, dq$)

Then the jump generator may be written as

*(x)(&&I) f (x, q)=* |
E

[ f (x$, q$)& f (x, q)] &$(x, q; dx$, dq$)

Hence the transition function for the jump process is given, for any
1 # B(E ), by

P1(t, x, q; 1)=e&*t :
�

n=0

*ntn

n !
6n(x, q; 1 )

where 60(x, q; 1 )=/1 (x, q) is the characteristic function of the set 1 and

6n(x, q; 1)=|
E

&$(x, q; dx$, dq$) 6n&1(x$, q$; 1 )

for n�1. It generates a step process, that is a jump process such that jump
times have no limit points in any time interval [0, T]. It follows that the
process determined by the semigroup Pt is a mixture of a deterministic
motion with a step process. It generalizes the piecewise deterministic pro-
cess obtained in the case of a discrete classical system and a finite dimen-
sional quantum system.(6, 8) To see this suppose that the classical system
consists of m distinct points and the quantum system is described by n_n
complex matrices. Hence E is a disjoint sum of m copies of the complex
projective space CPn. Let us recall that the action of the dynamical semi-
group Tt expressed in term of the process reads

Tt(Px)=| P(t, x, dy) Py
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where P(t, x, dy) is the transition probability function of the process and
y � Py is the tautological map, which assigns to every point y # E the one-
dimensional projector Py . It is equivalent (Proposition 1, Section 4 in ref. 8)
to the existence of a Markov semigroup Ut on the Banach space M(E ) of
all complex finite Borel measures on E, such that U� t=Tt , where U� t is the
quotient semigroup of Ut by ker ? and

?(+)=|
E

d+(x) Px

for all + # M(E ). Let us notice that in this case the map F is injective and
so, by Theorem 3.4, the dynamical system (AT , Tt) is imbedded into
(C(E ), Pt). Passing to the dual semigroup and taking into account that
AT*=(AT)

*
and C(E )*=M(E ) we obtain that the equality U� t=Tt*

holds
for Ut=Pt*.

4. EXAMPLE: THE COUPLING ON THE LOBATCHEVSKI SPACE

In this section we describe more precisely a Markov�Feller process
associated with a dynamical semigroup for a coupled system of a non-
relativistic classical particle moving freely on the Lobatchevski space and a
quantum system characterized by coherent states on this space. By this
example we want to demonstrate a possible influence of the quantum
matter onto the classical gravitational field. It will be achieved by the
change of a dynamical path of the classical particle moving freely along a
geodesic curve when interacting with the quantum system. In average the
classical evolution equation is perturbed by the expectation value of the
quantum position operator. It fits the spirit of the semiclassical theory of
gravity in which one studies the generalized Einstein's equation modified
by regularized vacuum expectation value of the energy-momentum tensor
of the matter-field operator.

Let us describe the classical system. We consider a classical particle
moving freely on the Lobatchevski space

Q=R_R+=[(x1 , x2): x2>0]

The phase space is the cotangent space M=T*Q with the canonical sym-
plectic form |=dp1 7 dx1+dp2 7 dx2 . It leads to the Lebesgue's measure
d+=dx1 dx2 dp1 dp2 on M. The time evolution is governed by a complete
vector field X on M:

X(x, p)= :
2

k=1 _ fk(x, p)
�

�xk
+ gk(x, p)

�
�pk&
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where fk(x, p)= pk and g1(x, p)=2p1 p2 �x2 , g2(x, p)=( p2
2& p2

1)�x2 . For
simplicity we denote the four coordinates (x1 , x2 , p1 , p2) by (x, p). It gives
the following second order differential equations for the position coor-
dinates:

x� 1=
2
x2

x* 1x* 2

x� 2=
1
x2

[(x* 2)2&(x* 1)2]

In other words the classical particle moves along a geodesic curve with
respect to the metric

g=
1
x2

2

(dx1 �dx1+dx2 �dx2)

Let us recall that a geodesic curve is a vertical straight line or a semicircle
with the center placed in an arbitrary point on the x1 -axis.

To describe the quantum system we use the system of generalized
coherent states on Q.(17) Let us recall that Q is the homogeneous space
Q=SL(2, R)�SO(2). For simplicity we take the first representation from
the series (Hk , ?k), where k=1, 3�2, 2,... . That is

Hq={ f : & f &2=| d+1(z) | f (z)|2<�=
where f is a holomorphic function in the unit complex disc |z|<1 and
d+1=(1�?) dz dz� . For q=(q1 , q2) # Q we have one-dimensional projectors
Pq=|`)(`|, where

|`)=
1&|`|2

(1& �̀ z)2
and `=

1&q2+iq1

1+q2&iq1

The semispectral measure E(B), B # B(Q) is given by E(B)=�B Pq d:(q),
where d: is the unique SL(2, R) invariant measure on Q normalized in
such a way that �Q Pq d:(q)=I, the identity operator. The quantum operator
corresponding to a function f on Q reads

f� =|
Q

f (q) dE(q)
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Let us assume that the quantum system evolves according to the
Hamiltonian H=d?1(h), where h=_3 , the Pauli matrix. It implies that
exp(&th)=diag(e&t, et).

To define a generator L of the total system we assume that *(x, p)=*,
is a constant function, and that hq : M � M is given by

hq1 , q2
(x1 , x2 , p1 , p2)=(x1 , x2 , p1 , p2&q2)

Hence

B(A� )(x, p)=($c� id ) A� (x, p)+(id�$q) A� (x, p)

+* |
Q

d:(q) PqA� (hq(x, p)) Pq&*A� (x, p)

The corresponding Markov�Feller generator reads

(Lf )(x, p, q)=Yf (x, p, q)+* |
E

&(x, p, q; dx$, dp$, dq$) f (x$, p$, q$)

&*f (x, p, q)

where

Yf (x, p, q)=
d
dt

f ( gt(x, p), exp(&th) q)| t=0

and

&(x, p, q; dx$, dp$, dq$)

=Tr(PqPq$) $(x$&x) $( p$1& p1) $( p$2&( p2&q$2)) dx$ dp$ d:(q$)

Here gt(x, p) is a geodesic curve on Q starting at point x # Q and with the
tangent vector p # R2, and exp(&th)(q1 , q2)=(e&2tq1 , e&2tq2). To finish
the description of the generator L we now compute Tr(PqPq$) and the
measure d:. Because Tr(PqPq$)=|(q, q$) |2 so

Tr(PqPq$)=
(1&|z|2)(1&|z$|2)

(1+|z|2 |z$| 2&z� z$&zz� $)2

where

z=
1&q2+iq1

1+q2&iq1

and z$=
1&q$2+iq$1
1+q$2&iq$1
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The measure d: is SL(2, R) invariant and normalized in such a way that
�Q d:(q) Pq=1, so d:(q)=(1�4?q2

2) dq1 dq2 . It implies that

|
E

&(x, p, q; dx$, dp$, dq$) f (x$, p$, q$)

=|
E

d:(q$) Tr(PqPq$) f (x, p1 , p2&q$2 , q$)

A particular realization of this process can be described as follows. Let us
assume that at time t=0 the classical particle starts in point (0, 1) # Q with
velocity (1, 0), while the quantum particle is in the state |q(0))=|(0, 1)).
Under the time evolution the classical particles moves along a curve #(t)=
(tanh t, cosh&1 t), that is on the circle with the center in point (0, 0) and
with radius one. The quantum system evolves to the state |q(t)) , where
q(t)=(0, e&2t). Then at time t1 a jump occurs. The time rate of jumps is
governed by a homogeneous Poisson process with rate *. The quantum
system jumps to a new state |q$) with probability Tr(Pq(t1)Pq$) d:(q$), while
the classical particle changes its velocity

\cosh&2 t1 , &
sinh t1

cosh2 t1+� \cosh&2 t1 , &
sinh t1

cosh2 t1

&q$2+
q$2 # (0, �), with probability p(q2(t1), q$2) given by

p(q2(t1), q$2)=
1

4? |
�

&�
Tr(Pq(t1)Pq$)

dq$1
(q$2)2

Because

Tr(Pq(t1)Pq$)=
16q2

2(t1) } 16(q$2)2

(1+q2(t1))4

} _(1+q$2)2+(q$1)2+\1&q2(t1)
1+q2(t1)+

2

((1&q$2)2+(q$1)2)

&2 \1&q2(t1)
1+q2(t1)+ (1&(q$1)2&(q$2)2)&

&2

so

p(q2(t1), q$2)=2q2
2(t1)[q$2+q2(t1)]&3
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And the process starts again. The classical particle moves again along a
geodesic curve, but a different one, which is the circle with the center in
point (&q$2 cosh t1 , 0) and with radius

r=[1+2q$2 sinh t1+(q$2 cosh t1)2]1�2

In other words the x1 -axis acts as an attracting boundary for the classical
particle. By this we mean that the particle tries to reach this boundary
faster than in the free case, and that the dynamical curves are ``more
curved'' then the geodesic ones.

5. CONCLUDING REMARKS

The presented framework starts with a phenomenological assumption.
At the very beginning we divide the world into two parts: a classical and
quantum one, which are assumed to interact. The coupling induces a flow
of information from the quantum system to the classical system. Such a
coupling is obtained by means of a dynamical semigroup of the total
system. To a given semigroup we associate the Markov�Feller process. In
this process the randomness appears as point events, i.e., there is a sequence
of random occurrences at random times, but there is no additional compo-
nent of uncertainty between jump times. It consists of the mixture of
deterministic motion with random jumps. The motion between jumps is
determined by a complete vector field, while the jump mechanism by a
Poisson measure. As was shown on the example it leads to an essential
modification of the classical trajectories.
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